
IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021 3679

Mixed Precision Low-Bit Quantization of Neural
Network Language Models for Speech Recognition

Junhao Xu , Jianwei Yu , Shoukang Hu , Member, IEEE, Xunying Liu , Member, IEEE,
and Helen Meng, Fellow, IEEE

Abstract—State-of-the-art language models (LMs) represented
by long-short term memory recurrent neural networks (LSTM-
RNNs) and Transformers are becoming increasingly complex and
expensive for practical applications. Low-bit neural network quan-
tization provides a powerful solution to dramatically reduce their
model size. Current quantization methods are based on uniform
precision and fail to account for the varying performance sensitivity
at different parts of LMs to quantization errors. To this end, novel
mixed precision neural network LM quantization methods are
proposed in this paper. The optimal local precision choices for
LSTM-RNN and Transformer based neural LMs are automat-
ically learned using three techniques. The first two approaches
are based on quantization sensitivity metrics in the form of either
the KL-divergence measured between full precision and quantized
LMs, or Hessian trace weighted quantization perturbation that
can be approximated efficiently using matrix free techniques. The
third approach is based on mixed precision neural architecture
search. In order to overcome the difficulty in using gradient descent
methods to directly estimate discrete quantized weights, alternating
direction methods of multipliers (ADMM) are used to efficiently
train quantized LMs. Experiments were conducted on state-of-the-
art LF-MMI CNN-TDNN systems featuring speed perturbation,
i-Vector and learning hidden unit contribution (LHUC) based
speaker adaptation on two tasks: Switchboard telephone speech
and AMI meeting transcription. The proposed mixed precision
quantization techniques achieved “lossless” quantization on both
tasks, by producing model size compression ratios of up to approx-
imately 16 times over the full precision LSTM and Transformer
baseline LMs, while incurring no statistically significant word error
rate increase.

Index Terms—Language models, speech recognition, LSTM-
RNN, transformer, low-bit quantization, ADMM.

I. INTRODUCTION

LANGUAGE models (LMs) are important components in
automatic speech recognition (ASR) systems and many

other applications. A key part of the statistical language mod-
elling problem is to derive the suitable representation of long-
range history contexts. Directly modelling long-span word his-
tories using conventional back-off n-gram models [1] generally

Manuscript received June 3, 2021; revised September 25, 2021; accepted
November 4, 2021. Date of publication November 19, 2021; date of current
version December 9, 2021. This research was supported in part by Hong
Kong Research Grants Council GRF under Grants 14200218, 14200220, and
14200021, in part by Innovation and Technology Fund under Grant ITS/254/19,
and in part by the Shun Hing Institute of Advanced Engineering under Grant
MMT-p1-19. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Kai Yu. (Corresponding author: Xunying
Liu.)

The authors are with the Chinese University of Hong Kong, Hong
Kong 999077, China (e-mail: jhxu@se.cuhk.edu.hk; jwyu@se.cuhk.edu.hk;
skhu@se.cuhk.edu.hk; xyliu@se.cuhk.edu.hk; hmmeng@se.cuhk.edu.hk).

Digital Object Identifier 10.1109/TASLP.2021.3129357

leads to a severe data sparsity issue [2]. To this end, over the past
few decades there have been significant efforts of developing
artificial neural network based language modelling techniques
in the speech technology community [3]–[14]. Neural network
language models (NNLMs) representing longer span history
contexts in a continuous and lower dimensional vector space,
are used to improve the generalization performance. With the
rapid progress of deep neural network (DNN) based ASR tech-
nologies in recent decades, the underlying network architectures
of NNLMs have evolved from feedforward structures [3]–[7] to
more advanced variants represented by long-short term mem-
ory recurrent neural networks (LSTM-RNNs) [8]–[10], [15]
and more recently neural Transformers [11]–[14], [16] that are
designed for modelling longer range contexts. In particular,
Transformer based language models in recent years have defined
state-of-the-art performance across a range of ASR task domains
[11]–[14], [17]. These models [11]–[13], [17] are often con-
structed using a deep stacking of multiple self-attention based
neural building blocks [18]–[20], each of which also includes
residual connections [21] and layer normalization modules [22].
Additional positional encoding layers [16], [23] are employed
to augment the self-attention structures with word sequence or-
der information. Performance improvements over conventional
LSTM-RNN language models have been widely reported [11],
[24].

However, the increasingly deeper and more complex architec-
ture designs featuring in LSTM-RNN and Transformer models
present many challenges for current ASR technologies. These
not only lead to a large increase in their overall memory footprint
and computational cost when operating on the cloud, but also
creates difficulty when deployed on edge devices to enhance
privacy and reduce latency. In a wider context within the speech
technology community, such dramatically increasing demand
for computational resources is consistent with the recent trend
of moving towards a data and computational intensive all neural
end-to-end (E2E) modelling paradigm represented by, for exam-
ple, Transformers [25]–[27], RNN transducers (RNN-T) [28],
and listen, attend and spell (LAS) [29]. State-of-the-art ASR sys-
tems featuring these end-to-end approaches often contain a very
large number of parameters, for example, up to 280 million [30].
Hence, there is a pressing need of developing ultra-compact, low
footprint language modelling methods, and ASR technologies
in general, to facilitate more aggressive reduction in memory
footprint, model training and evaluation time while maintaining
competitive accuracy performance.

2329-9290 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9650-0290
https://orcid.org/0000-0002-2449-1436
https://orcid.org/0000-0002-3345-6923
https://orcid.org/0000-0001-6725-1160
mailto:jhxu@se.cuhk.edu.hk
mailto:jwyu@se.cuhk.edu.hk
mailto:skhu@se.cuhk.edu.hk
mailto:xyliu@se.cuhk.edu.hk
mailto:hmmeng@se.cuhk.edu.hk

3680 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

To this end, significant efforts have been made in both the
machine learning and speech technology communities to de-
velop DNN compression techniques [31]–[74]. Pruning based
methods exploiting the structural and parameter sparsity were
used to reduce DNN model size in [38]–[44]. They are particu-
larly useful for models containing large fully connected layers
such as the ResNet systems [43], [44]. Knowledge distillation
and teacher-student learning [45]–[47] based approaches extract
information from a pre-trained, larger model into a smaller
one. Low rank matrix factorization [48]–[51], [55], and neural
architecture search (NAS) based methods [63]–[72] have also
been proposed.

Another powerful family of techniques recently drawing in-
creasing interest across the machine learning, computer vision
and speech technology communities to solve this problem is
to use low-bit DNN quantization techniques [31]–[37], [52],
[57], [58], [62], [74], [75]. By replacing floating point based
DNN parameters with low precision values, for example, bi-
nary numbers, model sizes can be dramatically reduced without
changing the DNN architecture [32], [57], [73]. Further DNN
size reduction can be obtained when low-precision quantization
is used in combination with neural architecture search (NAS)
techniques, for example, in the SqueezeNet system designed
for computer vision tasks [52]. In contrast to the extensive
prior research works on low-bit quantization methods primarily
targeting computer vision tasks [31]–[37], [52], only limited
previous research in this direction has been conducted in the
context of language modelling [57], [58] and ASR systems [56],
[59].

Two issues are associated with current low-bit DNN quantiza-
tion methods. First, these approaches are predominantly based
on uniform precision, where an identical bit-width is applied
to all weight parameters for quantization [76]. Within such
framework, the varying local performance sensitivity exhibited
at different parts of the underlying DNN system to quantization
errors is not taken into account. In practice, this often leads
to large performance degradation against full precision models.
Second, when DNN weights are restricted to discrete values, the
conventional back-propagation (BP) algorithm based on gradi-
ent descent methods cannot be directly applied to estimate the
quantized model parameters. Existing approaches for training
quantized DNNs often use a modified BP algorithm [31], [32].
In this approach, low precision quantized parameters are first
used in a forward pass to compute the error loss, before full
precision parameters are then used in a backward pass to prop-
agate the gradients for subsequent model update. However, the
inconsistency between quantized, discrete weights and the SGD
algorithm assuming continuous and differentiable error cost
functions leads to not only very slow convergence in training,
but also performance degradation against full precision models.

In order to address the first issue discussed above regarding
performance sensitivity, and motivated by the recent develop-
ment of mixed precision DNN acceleration hardware that allows
multiple locally selected precision settings to be used [37], novel
mixed precision DNN quantization approaches are proposed in
this paper by utilizing locally variable bit-widths at different
layer components of LSTM-RNN and Transformer LMs. The

optimal local precision settings are automatically learned using
three techniques. The first two approaches are based on quan-
tization sensitivity metrics in the form of either Hessian trace
weighted quantization perturbation that can be approximated
efficiently via matrix free techniques, or the KL-divergence
measured between full precision and quantized language mod-
els. The third approach is based on mixed precision neural
architecture search.

In order to address the second issue over the difficulty in
using gradient descent methods to directly estimate NNLMs of
discrete weights, the general problem of estimating quantized
DNN model parameters is reformulated as an optimization task.
For any form of quantized NNLMs using uniform or mixed
precision settings, alternating direction methods of multipliers
(ADMM) [17], [73], [77] are proposed to efficiently train their
discrete parameters. Two sets of model parameters respectively
associated with a full precision neural network LM, and the cor-
responding optimal quantized model with a particular precision
setting, are iteratively learned via a decomposed dual ascent
scheme in an alternating fashion. This novel quantized NNLM
estimation algorithm draws strength from both the decompos-
ability of classic dual ascent schemes and the stable convergence
of multiplier methods.

Experiments were conducted on state-of-the-art LF-MMI
CNN-TDNN and TDNN systems [78] featuring speed perturba-
tion, i-Vector [79] and learning hidden unit contribution (LHUC)
based speaker adaptation [80] on two tasks, Switchboard tele-
phone speech [81] and AMI meeting transcription [82]. Ex-
perimental results suggest the proposed mixed precision LM
quantization techniques achieved model size compression ratios
of about 16 times over the full precision Transformer LM base-
lines with no statistically significant recognition performance
degradation.

The main contributions of this paper are summarized as
follows.

1) To the best of our knowledge, this paper presents the
first work in the speech technology community to apply mixed
precision DNN quantization techniques to both LSTM-RNN
and Transformer based NNLMs. In contrast, prior researches
within the speech community in this direction largely focused
on uniform precision based quantization of convolutional neural
networks (CNNs) acoustic models [62] and LSTM-RNN lan-
guage models [57], [58], [75].

2) To the best of our knowledge, this paper is the first work to
introduce ADMM based neural network quantization techniques
for speech recognition tasks. In contrast, prior researches with
the speech technology community on low-bit quantization of
CNNs [62] and LSTM-RNN LMs [57], [58], [75] used the mod-
ified BP algorithm [31], [32] while the inconsistency between
discrete, quantized parameters and gradient based SGD update
remains unaddressed.

3) Transformer LM model size compression ratios of up to
approximately 16 times over the full precision Transformer LM
baselines with no statistically significant recognition perfor-
mance degradation were obtained using an average 2-bit mixed
precision configuration. To the best of our knowledge, this is
the best low-bit Transformer language model compression ratio

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3681

published so far in the speech technology community while
incurring no recognition accuracy loss.

The rest of the paper is organized as follows. LSTM-RNN
and Transformer based NNLMs are reviewed in Section II. A
general neural network quantization scheme based on uniform
or locally varying mixed quantization precisions are presented
in Section III. ADMM based training of quantized NNLMs are
presented in Section IV. Section V presents three novel mixed
precision quantization methods. Experiments and results are
shown in Section VI. Finally, conclusions and possible future
work are discussed in Section VII.

II. NN LANGUAGE MODELS

This section reviews two types of neural network language
models that are widely used in state-of-the-art speech recogni-
tion systems: long-short term memory recurrent neural network
(LSTM-RNN) and Transformer based language models.

A. Recurrent Neural Network LMs

The form of LSTM-RNN language models considered in this
paper computes the word probability wt given the preceding
history context of t− 1 words w1, . . .,wt−1 as

P (wt|wt−1
1) ≈ P (wt|wt−1,ht−1) , (1)

where ht−1 is the D-dimensional vector hidden state encoding
part of the history information (w1, . . .,wt−2) up to wordwt−2,
where D is the number of RNNLM hidden layer nodes. The most
recent word history wt−1 is represented by a N -dimensional
one-hot vector w̃t, where N is the vocabulary size. This one-
hot word input vector is first projected into a M -dimensional
(M � N) linear vector embedding as

xt = ΘU w̃
�
t , (2)

where ΘU is a projection matrix to be learned, before being fur-
ther fed into the hidden layers where non-linear transformations
are applied. The hidden state ht is calculated within the LSTM
cells [83] where the previous hidden state ht−1 and the current
word input embedding w̃t is combined. Each LSTM memory
cell consists of a set of Sigmoidal gating activations, the input
gate it, forget gate ft, cell gate c̃t and output gate ot. These are
used to control the information flow within the cells in order
to trap longer range history contexts and address the vanishing
gradient issue. The respective outputs from these gates are given
by

ft = σ
(
Θf [xt−1,ht−1, 1]

�
)

(3)

it = σ
(
Θi [xt−1,ht−1, 1]

�
)

(4)

c̃t = tanh
(
Θc [xt−1,ht−1, 1]

�
)

(5)

ot = σ
(
Θo [xt−1,ht−1, 1]

�
)

(6)

where tanh(u) = [tanh(u1), . . ., tanh(uD)] for any u ∈ RD.
The final hidden state is normally computed recursively in

an auto-regressive fashion, for example, from left to right in

case of standard uni-directional LSTM-RNN LMs modelling
history contexts only [5], [8], [10]. Using the above four gating
functions outputs, the LSTM-RNN cell contents ct and hidden
state representation ht are finally computed as

ct = ft ⊗ ct−1 + it ⊗ c̃t (7)

ht = ot ⊗ tanh(ct), (8)

where ⊗ is the Hadamard product.

B. Transformer LMs

The Transformer model architecture considered in this pa-
per features a deep stacking of multiple Transformer decoder
blocks. Unless otherwise stated, 6 Transformer decoder blocks
are used in all the experiments of this paper. As shown in the
top part of Fig. 1, each Transformer decoder block consists of a
multi-head self-attention [18]–[20] module and a feed forward
module. Residual connections [21] and layer normalization op-
erations [22] are also inserted between these two modules. Let
xl−1
t denotes the output of the (l − 1)-th Transformer block at

input word position t. The multi-head self-attention module in
the succeeding l-th block transforms xl−1

t to zlt as follows:

ql
t,k

l
t,v

l
t = Θl

Qx
l−1
t ,Θl

Kxl−1
t ,Θl

V x
l−1
t (9)

yl
t = Attention(kl

1, . . .,k
l
t,v

l
1, . . .,v

l
t,q

l
t) (10)

zlt = Θl
hy

l
t + xl−1

t (11)

ol
t = LayerNorm(zlt) (12)

where Θl
Q,Θ

l
K ,Θl

V denote the learnable query, key, value pro-
jection matrices which map xl−1

t into the corresponding vector
representations of query ql

t, key kl
t and value vl

t respectively. zlt
is the sequence of of cached key-value vector pairs up to time
t, which only contains the history context information and can
prevent the model from using any future context. Attention(·)
denotes the scaled multi-head dot product self-attention [20].
LayerNorm(·) represents the layer normalization operation [22].
Θl

h denotes the learnable projection matrix applied to the outputs
of the Attention operation prior to layer normalization. The
normalized output ol

t is then fed into the feed forward module:

slt = Θl
2GELU(Θl

1o
l
t) + ol

t (13)

xl
t = LayerNorm(slt) (14)

where Θl
1 and Θl

2 are the weight matrices that are applied
to the normalized output ol

t before Gaussian error linear unit
(GELU) [84] activation functions and after. For simplicity the
bias vectors optionally used in the feed forward modules are
omitted in the above Equation (13). In addition, positional
embedding layers are also used in all the transformer LMs
considered in this paper.

III. NEURAL NETWORK QUANTIZATION

The standard n-bit quantization problem for deep neural net-
works (DNNs) considers the task of for any full precision weight
parameter,Θ, finding its closest discrete approximation from the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

3682 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

following quantization table with a global scaling factor α and
quantization parameter V ,

q = αV ∈ {0,±α, . . . ,±α · (2n−1 − 1)} (15)

as the one that incurs the minimum quantization error

f(Θ) = argmin
q
|Θ− q| (16)

Further simplification to the above quantization table of Equa-
tion (15) leads to extremely low bit quantization based on, for
example, binary values {−1, 1} [34], [74], or tertiary values
{−1, 0, 1} [85].

It is assumed in the above standard quantization process that
a global quantization table is applied to all weight parame-
ters. In order to account for the fine-grained local quantization
sensitivity, the following more general form of quantization is
considered for a particular model parameter Θ(l) within any of
the l-th weight cluster, for example, all parameters of the same
LSTM or Transformer LM layer,

f(Θ(l)) = argmin
Q(l)
|Θ(l) −Q(l)| (17)

can be used. The locally shared l-th quantization table is

Q(l) = α(l)V (l) ∈ {0,±α(l), . . . ,±α(l)(2nl−1 − 1)} (18)

where the full precision scaling factor α(l) is used to adjust the
dynamic range of all the quantized weights in the l-th cluster. It is
shared locally within each individual DNN parameter clusters.
The locally variable quantization bit length nl can be set to
be 1, 2, 4, 8 etc. depending on the optimal precision settings
to be used. A special case, when the local quantization table
in Equation (18) is shared across all the layers in the system,
this leads to the traditional uniform precision quantization. The
above tying of quantization tables may be flexibly performed at
either layer, or node level, or in the extreme case at individual
parameter level (this is equivalent to no quantization being
applied). Intuitively, the longer the local quantization precision
bit widths {nl} are used at each part of the underlying neural
language model, a smaller compression ratio after quantization
and reduced performance degradation is expected.

IV. ADMM BASED TRAINING OF QUANTIZED DNN

One major challenge faced by both uniform and mixed pre-
cision quantization is that the gradient descent methods and
back-propagation (BP) algorithm cannot be directly used when
weights are quantized to discrete values. To this end, mixed
precision BP was proposed in [31], [32] where low precision
binarized parameters were first used in the forward pass to
compute the error loss before full precision parameters are used
in the backward pass to propagate the gradients. However, there
is an inconsistency between quantized, discrete weights and
the assumption over continuous and differentiable error cost
functions in SGD update. Hence, directly training quantized
system using mixed precision BP leads to very slow convergence
and the performance gap between full precision and quantized
systems remains large. An alternative solution to this problem is

to reformulate quantization as a constrained optimization prob-
lem solved by the alternating direction methods of multipliers
(ADMM) [73].

The ADMM based optimization decomposes a dual ascent
problem into alternating updates of two variables. In the context
of the neural network LM quantization problem considered here,
these correspond to the full precision model weights update and
the discrete quantization tables estimation. The overall ADMM
Lagrange function is given as

L = Fce(Θ) + (γλ)� · (Θ− f(Θ)) +
γ

2
||Θ− f(Θ)||22

(19)
where Fce is the cross entropy (CE) loss, Θ are the full pre-
cision model parameters. f(Θ) represents the quantization of
the parameters calculated from the quantization using Equation
(17). γ > 0 is the penalty parameter which is empirically set
as 10−3 throughout this paper and λ denotes the Lagrangian
multiplier. The standard Lagrangian term expressed in the form
of a dot product between the multiplier variable λ and the
quantization error, Θ− f(Θ), is shown as the second term in
Equation (19). In order to further improve the robustness and
convergence speed of the ADMM algorithm, an additional term
related to the quantization error squared norm, shown as the third
term in Equation (19), is also introduced to form an augmented
Lagrangian [73]. Further rearranging Equation (19) leads to the
following loss function.

L = Fce(Θ) +
γ

2
||Θ− f(Θ) + λ||22 −

γ

2
||λ||2 (20)

Given a particular uniform or mixed precision quantization
configuration, the ADMM algorithm is iteratively performed
to find the optimal scaling factors, {α(l)}, in the quantization
table(s) of Equation (18). For simplicity, in the following de-
tailed description of the algorithm, we assume a globally shared
quantization table {0,±α, . . . ,±α(2n−1 − 1)} is applied to
all parameters and a single scaling factor α is to be learned.
The following iterative update can be extended when multiple
shared quantization tables of different bit-widths nl in Equation
(18) are used. When the ADMM algorithm is performed at the
(k + 1)th iteration, the overall update can be split into three
stages presented in the following subsections.

A. Full Precision Model Parameter Update

The following equation is used to update the full precision
weight parameters Θ(k+1).

Θ(k+1) = argmin
Θ

L(Θ, f(Θ(k)),λ(k)) (21)

where f(Θ(k)),λ(k) are the quantized weights and error variable
at the kth iteration. The gradient of the loss function in Equation
(20) w.r.t Θ is calculated as the following.

∇L = ∇Fce + γ(Θ− f(Θ(k)) + λ(k)) (22)

It is found in practice that the quadratic term of the augmented
Lagrangian of Equation (20) can dominate the loss function
computation and lead to a local optimum. Following the extra-
gradient method suggested in [86], the solution to address this

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3683

issue in this paper is to perform the gradient calculation by one
additional step ahead to improve the convergence.

Θ̄← Θ(k) − η1∇L(Θ)

Θ(k+1) ← Θ(k) − η2∇L(Θ̄) (23)

Here Θ̄ represents the temporary variable used to store the inter-
mediate updated parameters, and η1 and η2 are separate learning
rates that are empirically set as 0.02 and 0.001 throughout the
experiments of this paper.

B. Quantization Variables Update

The quantization variables including the scaling factor α in a
globally shared quantization table {0,±α, . . . ,±α(2n−1 − 1)},
and the corresponding quantized parameters derived using Equa-
tion (17) can be solved by minimizing the following:

min
f
||Θ(k+1) − f(Θ(k)) + λ(k)||22

⇒ min
α,V
||Θ(k+1) + λ(k) − α(k)V (k)

α ||2 (24)

where alternating updates of the scaling factor estimate α(k)

and the associated quantized model parameters V (k+1)
α are

performed via an inner-loop within the current (k + 1)th outer
iteration.

The following algorithm shows the details of such inner-loop
update. In all the experiments of this paper, the maximum
number of inner-loops is set as 20 and practically found sufficient
to ensure convergence.

The minimization operation of Equation (24) aims to find
the corresponding quantized model parameters given the full
precision parameter updates in Section IV-A. As it is non-trivial
to update both the scaling parameters α(l) of the quantization
table of Equation (18) and the quantized parameters derived
using Equation (17) at the same time, an alternating estimation
procedure is used here in the inner-loop of Algorithm 1, to
produce interleaving updates of the scaling parametersα(l) when
fixing the current quantized parameters V

(k)
α , and vice versa

when updating the quantized parameters V
(k)
α , while keeping

α(l) unchanged. Intuitively the resulting update of α(l) accounts
for the change in the dynamic range of model parameters before
and after quantization.

C. Quantization Error Update

The Lagrange multiplier variable λ, now encoding the ac-
cumulated quantization errors computed at each iteration, is
updated as

λ(k+1) = λ(k) +Θ(k+1) − f(Θ(k+1)) (25)

In all experiments of this paper the scaling factors α(l) in
Equation (18) are initialized to 1.0 before the ADMM update is
performed.

The above ADMM estimation of quantized neural network
LMs can be executed iteratively until convergence measured
in terms of validation data perplexity. In practice, a maximum
number of 20 ADMM iterations was used throughout all the
experiments of this paper to obtain convergence for all quantized
LSTM-RNN and transformer LMs, as will be shown later in
the convergence speed analysis of the following Section VI of
experiments.

V. MIXED PRECISION QUANTIZATION

This section presents three approaches to automatically learn
the optimal local precision settings previously introduced in
Equation (18) for DNN quantization. The first two minimizes
the performance sensitivity to low-bit quantization. They are
measured using either the KL divergence between full precision
and quantized LMs, or the log-likelihood curvature with respect
to quantization error. The third approach uses a mixed precision
differentiable neural architecture search technique. Examples of
their application to Transformer and LSTM-RNN based LMs are
also given.

A. KL Divergence Based Mixed Precision Quantization

The ultimate goal for any DNN quantization task, including
the neural network LMs considered in this paper, is to obtain
a “lossless” model compression such that the distance between
the distribution embodied by the original full precision LM and
that of the quantized model must be minimized. This requires
the relative entropy, or equivalently the Kullback-Leibler (KL)
divergence between full precision and quantized neural network
LMs to be minimized. As a special case, the KL divergence
is zero when a lossless compression is achieved, so that the
same LM distribution is preserved after quantization. The use of
KL divergence based distance metrics in early researches led to
widely adopted back-off n-gram LM pruning techniques [87],
[88].

In this paper, the KL divergence between the probability dis-
tributions obtained from a full precision NNLM and its quantized
counterpart using a particular mixed precision setting is used to
measure the resulting performance sensitivity. Taking a L-layer
Transformer LM for example, for any quantization f(·) being
applied to the full precision parameters Θ, the KL divergence
based quantization sensitivity measure is computed over the

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

3684 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

training data of Nw words as,

ΩKL =

L∑
i=1

ΩKL
i =

L∑
i=1

DKL(P (Θi)||P (fni
(Θi)))

=
L∑

i=1

Nw∑
t=1

P (wt|wt−1, ht−1,Θi) ln
P (wt|wt−1, ht−1,Θi)

P (wt|wt−1, ht−1, fni
(Θi)

(26)

where Θi denote the full precision parameters of the ith layer,
and fni

(Θi) its associated ni-bit quantized parameters given a
particular local precision bit width ni.

Given a target average quantization precision such as 2-bit,
the local quantization bit widths used in each layer should be se-
lected such that the total performance sensitivity in Equation (26)
is minimized while satisfying the target model size constraint.
However, directly evaluate the combined KL divergence metric
for all possible mixed precision local quantization settings leads
to a very large number of possible systems to be considered.
For example, choosing among 4 different precision settings,
1-bit, 2-bit, 4-bit and 8-bit, across all 6 layers of a Transformer
LM, produces a total of 46 = 4096 mixed precision quantized
Transformer LMs to be evaluated in terms of KL divergence
against the full precision model.

In order to address this scalability issue, a practical im-
plementation adopted in this paper is based on a divide and
conquer approach. The key information required to compute the
sensitivity measure in Equation (26) is the local KL divergence
metric, ΩKL

i , for example, associated with the ith Transformer
LM layer. In our implementation, a set of prototype transformer
LMs quantized using uniform precision, for example 1-bit, 2-bit,
4-bit and 8-bit are trained off-line first via ADMM optimization
of Section IV. The performance sensitivity in Equation (26) can
then be computed first locally for each layer by replacing the
full precision parameters using each of the above four possible
quantization choices at that layer only, before taking the sum to
produce the combined net KL divergence metric when a partic-
ular mixed precision based local quantization configuration is
applied across the entire Transformer LM.

In order to further improve the efficiency when computing
the KL divergence based sensitivity measure in Equation (26),
a very small number of training data samples, as little as the
data of one single mini-batch (batch size set as 32 throughout
this paper) can be used, and adopted in all experiments of this
paper. In practice this was found to produce quantized LM
perplexity comparable to that obtained by computing the KL
metric over the entire training data set. An ablation study on the
relationship between the amount of Switchboard training data
used to compute the KL divergence metric and determine the
resulting mixed precision for Transformer LM quantization and
the resulting LM’s perplexity performance is shown in Table I. In
order to further ensure efficiency, the resulting mixed precision
quantized LMs using varying automatically learned local preci-
sion settings together with quantized parameters inherited from
uniform precision models of different bit-widths are fine-tuned,
rather than retrained from scratch. In practice, this was found
to produce performance comparable to re-training them from
scratch after determining the precision settings, as is illustrated

TABLE I
PERPLEXITY PERFORMANCE OF SWITCHBOARD DATA TRAINED AVERAGE 2-BIT

QUANTIZED TRANSFORMER LMS WITH THEIR LOCAL PRECISION SETTING

LEARNED USING THE KL DIVERGENCE METRIC OF EQUATION (26), OR THE

CURVATURE BASED SENSITIVITY METRIC OF EQUATION (27). THESE TWO

METRICS WERE COMPUTED USING EITHER ONE SINGLE RANDOMLY DRAWN

MINI-BATCH (BATCH SIZE 32), A RANDOMLY DRAWN 50% SUBSET, OR ALL

THE TRAINING THE DATA

in the example contrast of Table II for 2-bit and 4-bit KL mixed
precision quantized Transformer LMs on the Switchboard data.

An example application of KL divergence based mixed pre-
cision quantization of Transformer and LSTM-RNN LMs are
shown in Figs. 1 and 2 respectively.

B. Curvature Based Mixed Precision Quantization

The second approach to measure performance sensitivity to
quantization examines the local training data log-likelihood
curvature. Under mild assumptions such that the parameters of
a DNN is twice differentiable and have converged to a local
optimum, it has been shown in previous researches [35] that
the performance sensitivity to quantization, when using a given
precision setting, can be expressed as the squared quantization
error further weighted by the parameter Hessian matrix trace.
For any quantization f(·) being applied to the parameters Θ of
a L layer Transformer LM, the total performance sensitivity is
given by the following sum of Hessian trace weighted squared
quantization error.

ΩHes =

L∑
i=1

ΩHes
i =

L∑
i=1

Tr(Hi) · ||f(Θi)−Θi||22 (27)

Intuitively for each cluster of weight parameters (for example
of the same layer) to be quantized using a particular precision
bit width, given the same amount of model parameter changes
resulted from quantization, a smaller Hessian matrix trace indi-
cates a lower performance sensitivity to quantization.

Given a target average quantization precision such as 2-bit, the
local quantization setting, for example, used in each Transformer
LM layer, should be selected such that the total performance
sensitivity in Equation (27) is minimized while satisfying the
target model size constraint. Similar to the KL divergence based
mixed precision quantization, a set of prototype Transformer
or LSTM-RNN LMs quantized using uniform precision, for
example 1-bit, 2-bit, 4-bit and 8-bit, are trained off-line first
using the ADMM optimization in Section IV. The log-likelihood
curvature based performance sensitivity in Equation (27) can
then be computed locally for each layer using each quantization
choice before taking the sum to produce the combined net sensi-
tivity measure for any mixed precision setting being considered.
For larger LSTM-RNN or Transformer LMs containing up to
hundreds of millions of parameters, and large DNNs in general,
directly computing the Hessian matrix and its trace is computa-
tionally infeasible. In order to address this issue, an efficient

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3685

TABLE II
PERFORMACE CONTRAST BETWEEN 2-BIT AND 4-BIT KL MIXED PRECISION QUANTIZED TRANSFORMER LMS ON THE SWITCHBOARD DATA CONSTRUCTED USING

EITHER POST PRECISION LEARNING MODEL FINE-TUNING (LM 2, 4), OR RETRAINING FROM SCRATCH (LM 1, 3)

stochastic linear algebra approach based on the Huchinson’s
Algorithm [89] is used to approximate the Hessian trace,

Tr(H) ≈ 1

m

m∑
i=1

z�i Hzi (28)

where the expensive matrix multiplication between H and zi

can be avoided, and efficiently computed using Hessian-free
approaches [35]. zi is a random vector sampled from a Gaussian
DistributionN (0,1). Following the previous research reported
in [37], the maximum number of Hutchinson steps set asm = 50
is found sufficient to obtain an accurate Hessian approximation
for computing the curvature based quantization sensitivity of
Equation (27), and used throughout the experiments of this pa-
per. Again for efficiency, a small subset of the training data from a
randomly drawn mini-batch (batch size 32) is used, in common
with the previous KL divergence metric. Further analysis on
the relationship between the sampled training data size and the
resulting quantized Transformer LMs perplexity performance
is shown in the last line of Table I for the Switchboard data.
An example application of the above curvature performance
sensitivity based mixed precision quantization of a Transformer
LM is shown in Fig. 3.

C. Architecture Search Based Mixed Precision Quantization

The third solution to automatically learn the optimal local
quantization precision settings is to use mixed precision based
neural architecture search (NAS) approaches. Neural architec-
ture search (NAS) techniques [90] can efficiently automate
neural network structure designs that have been largely based
on expert knowledge or empirical choice to date. Among ex-
isting NAS methods, differentiable neural architecture search
(DARTS) [69]–[71], [91], [92] benefits from a distinct advantage
of being able to simultaneously compare a very large number
of candidate architectures during search time. This is contrast
to earlier and more expensive forms of NAS techniques based
on, for example, genetic algorithms [72] and Reinforcement
learning (RL) [65], [93], where explicit system training and
evaluation are required for a large number of candidate structures
under consideration.

Neural architecture search using DARTS is performed over an
over-parameterized super-network containing paths connecting
all candidate DNN structures to be considered. The search is
transformed into the estimation of the weights assigned to each
candidate neural architecture within the super-network. The
optimal architecture is obtained by pruning lower weighted
paths. This allows both architecture selection and candidate

Fig. 1. An example of mixed precision quantization of a Transformer LM using
KL-divergence based mixed precision quantization. For the first Transformer
module positioned right after the embedding and position encoding layer, its
multi-head attention layer (green) uses 2-bit quantization while its feed forward
layer (orange) uses binary quantization precision, as determined by the KL-
divergence based sensitivity measure.

DNN parameters to be consistently optimized within the same
super-network model.

The key difference from conventional NAS tasks is that
instead of selecting over heterogeneous neural building struc-
tures, for example, varying hidden layer left and right context
offsets or projection layer dimensionality in LF-MMI trained
time delay neural networks (TDNNs) [91], different quantized
neural building blocks, for example, LSTM or Transformer LM
modules of different bit-widths are considered. This crucial
difference requires the associated mixed precision quantization
super-network to be specially designed. Such super-network is
constructed by first separately training transformer LMs using
uniform precision, for example 1-bit, 2-bit, 4-bit and 8-bit,
using ADMM optimization, before connecting these uniform
precision quantized Transformer LMs at each layer, where the
system specific activation outputs are linearly combined using a
set of quantization precision selection weights as in the following
equation:

ol =
∑
n∈N

exp(aln)∑
exp(aln)

F (fn(Θ
l),ol−1) (29)

where aln is the architecture weights using n-bit quantization
for the l-th cluster of weight parameters. fn(·) represents n-bit
quantization of the weight parameter Θl and F (·) is the under-
lying layer’s activation function. The set of possible quantization
precision setting,N = {1, 2, 4, 8}, is used throughout this paper.
An example of such mixed precision Transformer super-network
is shown in Fig. 4.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

3686 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 2. An example of auto-configured mixed precision quantization of a 2-
layer LSTM-RNN LM with its forget, input and output Sigmoid gates σ marked
in orange, grey and dark blue, and cell gate tanh in brown respectively. The
forget gate (orange) parameters use 1-bit quantization, while those of the output
gate (dark blue) use 2-bit quantization, as determined by the KL-divergence
based sensitivity measure.

Fig. 3. An example of auto-configured mixed precision quantization of a
Transformer LM using curvature based sensitivity measure. For the first Trans-
former module positioned right after the embedding and position encoding layer,
its multi-head attention layer (green) uses binary quantization while its feed
forward layer (orange) uses 4-bit quantization precision, as determined by the
Hessian-trace weighted quantization sensitivity measure.

In order to avoid the trivial selection of the longest, most gen-
erous quantization bit width, these precision selection weights
learning can be further constrained by a model complexity
penalty term with respect to the number of bits retained after
quantization, in order to obtain a target average quantization
precision, for example, 2-bit,

ΩNAS = Fce(Θ) + β
∑
(n,l)

aln ·
√
n (30)

where Fce(Θ) is the standard cross-entropy loss.

VI. EXPERIMENTS

In this section the performance of mixed precision quantized
LSTM-RNN and Transformer LMs are evaluated on two speech
recognition systems both of which use state-of-the-art LF-MMI
sequence trained hybrid time delay neural networks (TDNNs)
acoustic models with factored weights and additional convolu-
tional layers [78]. Speech perturbation based data augmentation
and i-Vector based speaker adaptation are also employed. Mod-
ified KN smoothed 4-gram back-off LMs are used during the
initial N-best list generation pass before various NNLMs are then

Fig. 4. An example of auto-configured mixed precision quantization of a
Transformer LM using mixed precision architecture search. For the first Trans-
former module, its multi-head attention layer is uses 2-bit quantization (green)
given the associated selection weight of 0.6 while its feed forward layer uses
4-bit quantization precision (orange) given the associated selection weight of
0.5, as the 1-best choice selected from the mixed precision NAS super-network.

applied in the following rescoring stage. In Section VI-A, the
first set of experiments conducted on the Switchboard I (SWBD)
corpus [81] are presented. In Section VI-B another comparable
set of experiments are carried out on the AMI meeting room
data [82].

All the LSTM-RMM LMs investigated in this paper consist of
2 LSTM layers while both the input word embedding and hidden
layer sizes were set as 1024. All the Transformer LMs used in
this paper contain 6 Transformer layers. The dimensionality of
all query, key and value embedding and hidden vectors are set
as 512 for each batch of data. All the mixed precision quantized
LSTM-RNN LMs and Transformer LMs of this paper use layer
or node level precision settings that are set either manually as
equal bit-widths (1-bit, 2-bit, 4-bit or 8-bit), or automatically
learned using the KL, curvature or NAS based mixed precision
quantization methods of Sections V. All NNLMs were tained
using a single NVIDIA Tesla V100 Volta GPU card. Statis-
tical significance test was conducted at level α = 0.05 based
on matched pairs sentence segment word error (MAPSSWE)
for recognition performance analysis. This is used to identify
various “lossless” neural LM quantization configurations that
incur no recognition performance degradation, or statistically
significant word error rate (WER) increase.

The implementation used to evaluate the mixed precision
quantization methods of this paper is exclusively based on the
existing low-bit quantized precisions that are already natively
supported by the NVidia Tesla V100 GPU. These include the
use of the Boolean and masking operators to implement 1-bit
quantization, and the INT8 data type used to implement 2, 4 and
8-bit quantization. In case of 2-bit and 4-bit quantization, extra
padded bits of zero were also included.

A. Experiments on Conversational Telephone Speech

The Switchboard I telephone speech corpus we use con-
sists of approximately 300 hours of audio data released by
LDC (LDC97S62). Following the Kaldi toolkit [95] and its
CNN-TDNN recipe,1 LF-MMI trained CNN-TDNN acoustic
models [78] with data augmentation and i-Vector adaptation [79]

1egs/swbd/s5c/local/chain/run_cnn_tdnn_1a.sh

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

egs/swbd/s5c/local/chain/run_cnn_tdnn_1a.sh

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3687

TABLE III
PERFORMANCE OF THE BASELINE FULL PRECISION (LM 1), UNIFORM PRECISION QUANTIZED (LM 2-11) AND MIXED PRECISION QUANTIZED RNNLMS WITH

LOCAL LAYER OR NODE LEVEL PRECISION SET EITHER MANUALLY WITH EQUAL BIT-WIDTH (LM 12-15, 16-19) OR AUTOMATICALLY LEARNED (LM 20-25)
USING KL, CURVATURE (HES) OR NAS BASED MIXED PRECISION QUANTIZATION METHODS OF SECTION V ON SWITCHBOARD NIST HUB5’00, RT02 AND RT03.

EQUAL WEIGHT INTERPOLATION OF N-GRAM AND NEURAL LMS USED IN N-BEST RESTORING. ALL WER CHANGES OF NO STATISTICAL SIGNIFICANCE

(MAPSSWE, α = 0.05) OVER THE FULL PRECISION BASELINE (LM 1) ARE MARKED WITH “∗”. OFFLINE, POST-TRAINING QUANTIZED LMS’ PERFORMANCE

ARE ALSO SHOWN (LM 6-9)

were then built. The CNN-TDNN network consisted of 6 convo-
lutional layers followed by 8 context-splicing TDNN layers with
1536 nodes per layer. A 160-dimensional factored linear projec-
tion was employed prior to affine transformation in each context-
splicing layer other than the first one. ReLU activation functions
were used, followed by batch normalization and dropout oper-
ations. Left and right context offsets of {−3, 3} were also used
in the context-splicing layers. More detailed description fo the
baseline system’s acoustic modelling configuration can be found
in [96]. The Switchboard NIST Hub5’00, RT02 and RT03 evalu-
ation sets were used. A 30 K word recognition lexicon was used.
Various LSTM and Transformer LMs trained on the Switchboard
and Fisher transcripts (LDC2004T19, LDC2005T19) were used
to rescore the 4-gram LM produced N-best lists (N = 20).

1) Experiments on LSTM-RNN LMs using baseline full
precision, various uniform and mixed quantization settings are
shown in Table III. All WER changes as the result of quantization
that are of no statistical significance (MAPSSWE,α = 0.05) are
marked by “∗”. Several trends can be found here:
� Among the uniform precision quantized LMs, the LSTM-

RNN LMs of 1-bit and 8-bit precisions trained using the
ADMM optimization of Section IV consistently outper-
form those of comparable bit-widths but built using the
modified BP algorithm (LM 10 and 11 vs. LM 2 and
5 in Table III). In particular, for 1-bit quantization, the
ADMM optimization method produced WER reductions
up to 1.1% absolute on the callhm data of the Hub5’00 set
over the traditional modified BP algorithm (LM 10 vs. LM
2 in Table III). The advantage of the ADMM algorithm
in terms of convergence speed and training efficiency is
further illustrated in left part of Fig. 5.

� The mixed precision quantized LSTM LMs (LM 12-25 in
Table III) consistently outperform the uniform precision
quantized models (LM 2-11). For example, given the same
quantization precision at approximately 2-bit (compression
ratio of 16 times over 32-bit full precision), a wide range
of mixed precision quantized LMs (LM 13, 17, 20, 22,
24 in Table III) produced statistically significant 0.3-0.8%
average WER reduction across three test data sets over
with the comparable 2-bit uniform precision quantization
baseline (LM 3).

� Note that the first two of these mixed precision quantized
LSTM LMs (LM 13, 17 in Table III) used multiple layer
or node level locally applied quantization tables of the
same bit-width manually set as 2-bit. As expected, a finer
modelling granularity provided by the node level local
quantization (LM 17) marginally outperformed the use of
layer level (LM 13) by 0.1% on average in WER, albeit with
a smaller compression ratio of 13.6 vs. 15.5. Similar trends
can be found when increasing the quantization precision
from 2-bit to 8-bit.2

� Among the three mixed precision quantization LSTM LMs
with approximately 2-bit precision (LM 20, 22, 24 in
Table III), the KL quantized LM (LM 22) with a 1.9-bit
average precision gives the lowest average WER of 11.2%.
These three mixed precision LMs’ respective local selec-
tion of quantization bit-widths at different gates of various
LSTM layers are shown in Fig. 6(a)-6(c). Note that KL and
curvature based quantization (LM 20, 22 in Table III) both

2Considering the trade-off between WER and compression ratio for node and
layer level local quantization precision settings, the subsequent experiments will
focus on using layer level mixed precision quantization.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

3688 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Fig. 5. Perplexity and convergence speed comparison on LSTM-RNN LMs (figure (a), showing LM 1, 2, 6 in Table III) and Transformer LMs (figure (b), showing
LM 1,2,6 in Table IV) between baseline full precision models ((Baseline), binarized models trained using modified back-propagation (Bin-modBP) [31], [32] and
ADMM trained binarized models (Bin-ADMM) on Switchboard validation data.

Fig. 6. Number of bits used in local quantization of SWBD data trained neural LMs automatically derived using KL, curvature and NAS based mixed precision
quantization of Section V for: 1) LSTM-RNN LMs ((a)-(c), also shown as LM 16-18 in Table III) at their input/output linear layers (light blue), and individual
forget (dark blue), input (orange), cell (grey) and output (yellow) gates inside LSTM layers; 2) Transformer LMs ((d)-(f), also shown as LM 16-18 in Table IV) at
their input/output linear layers (light blue), and 1st/2nd multihead attention sublayers (dark blue/orange), following 1st/2nd feedforward sublayers (grey/yellow)
within each of 6 Transformer layers.

selected 8-bit precision for the 2nd LSTM layer’s output
gate parameters, indicating a larger performance sensitivity
to quantization measured at the LSTM cells’ output gate.

� Among all the quantized LSTM LMs marked with “∗” in
Table III that incur no statistically significant WER increase
against the full precision baseline (LM 1), the 1.9-bit KL
mixed precision quantized model (LM 22) also produced
the largest “lossless” compression ratio of 15.6.

2) Experiments on Transformer LMs designed using a compa-
rable set of contrasts previously used in Table III for LSTM-RNN
LMs are shown in Table IV, where a large number of quantized

Transformer LMs featuring different forms of mixed quanti-
zation schemes (LM 12 to 25 in Table IV, marked with “∗”)
produced lossless compression with no statistically significant
WER changes relative to the baseline full precision model (LM
1). Several other trends that are similar to those found in Table III
on LSTM-RNN LMs are summarized below:
� Among the uniform precision quantized LMs, the Trans-

former LMs of 1-bit and 8-bit precision trained using
ADMM optimization of Section IV marginally outperform,
or are comparable in performance to those two of same
precisions using the modified BP algorithm (LM 10 and

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3689

TABLE IV
PERFORMANCE OF THE BASELINE FULL PRECISION (LM 1), UNIFORM PRECISION QUANTIZED (LM 2-11) AND MIXED PRECISION QUANTIZED TRANSFORMER LMS

WITH LOCAL LAYER OR NODE LEVEL PRECISION SET EITHER MANUALLY WITH EQUAL BIT-WIDTH (LM 12-15, 16-19) OR AUTOMATICALLY LEARNED (LM
20-25) USING KL, CURVATURE (HES) OR NAS BASED MIXED PRECISION QUANTIZATION METHODS OF SECTION V ON SWBD NIST HUB5’00, RT02 AND RT03.

EQUAL WEIGHT INTERPOLATION OF N-GRAM AND NEURAL LMS USED IN N-BEST RESTORING. ALL WER CHANGES OF NO STATISTICAL SIGNIFICANCE

(MAPSSWE, α = 0.05) OVER THE FULL PRECISION BASELINE (LM 1) ARE MARKED WITH “∗”. OFFLINE, POST-TRAINING QUANTIZED LMS’ PERFORMANCE

ARE ALSO SHOWN (LM 6-9)

11 vs. LM 2 and 5 in Table IV). The advantage of the
ADMM based Transformer LM estimation in terms of
convergence speed and training efficiency is shown in right
part of Fig. 5.

� The mixed precision quantized Transformer LMs (LM 8-
18 in Table IV) again consistently outperform the uniform
precision quantized baselines (LM 2-11) across different
lower bit-widths ranging from 1-bit, 2-bit to 4-bit. For
example, given the same quantization precision at approx-
imately 2-bit (compression ratio of 16 times), a wide range
of mixed precision quantized Transformer LMs (LM 13,
20, 22 in Table IV) produced statistically significant 0.4%
absolute WER reduction averaged across all data sets over
with the comparable 2-bit uniform precision quantization
LM (LM 3 in Table IV).

� Among the three mixed precision quantized Transformer
LMs with approximately 1.9-bit precision (LM 20, 22,
24 in Table IV), the KL and curvature based mixed pre-
cision quantized Transformer LMs (LM 22) with a 1.9-
bit average precision produced the lowest average WER
of 10.9%, as well as the largest “lossless” compression
ratio of 15.1 among all the quantized Transformer LMs
marked with “∗” in Table IV that incur no statistically
significant WER increase over the full precision baseline
(LM 1 in Table IV). Their respective local selection of
quantization bit-widths at different sublayers within vari-
ous Transformer layers are shown in Fig. 6(e)-6(f), where
an expected general trend is found that both the lower
Transformer layers heavily tasked with de-noising the data,
and the top Transformer layer used to immediately predict
detailed word probabilities over a large vocabulary, require

longer quantization precision settings (2-bit to 8-bit) than
those middle Transformer layers (1-bit to 4-bit).

� It is also worth noting the 4-bit ADMM node level locally
quantized Transformer LM (LM 14 in Table IV), and the
4-bit KL or curvature mixed precision quantized Trans-
former LM (LM 21, 23 in Table IV), both produced no
WER degradation against the full precision model (LM 1),
albeit with a smaller compression ratio of 7.0.

B. Experiments on AMI Meeting Room Data

The Augmented Multi-party Interaction (AMI) speech corpus
consists of approximately 100 hours of audio data collected
using both headset microphone and distant microphone arrays
from the meeting environment. Following the Kaldi recipe,3

three LF-MMI trained [78] acoustic models with speech per-
turbation based data augmentation and i-Vector based speaker
adaptation [79] were then constructed. The AMI 8.9-hour dev
and 8.7-hour eval sets recorded under close talking microphone
(ihm), single distant microphone (sdm) and multiple distant
microphones (mdm) were used. A 47 K word recognition lex-
icon was used. Various LSTM and Transformer LMs based on
the same configurations as those on the Switchboard data in
Table III and IV were trained using a mixture of text sources
of 15 M words including Fisher transcripts and 3 times of
AMI transcriptions before being used to rescore the 3-gram
LM produced N-best lists (N = 20). All other experimental
configurations remain the same as the Switchboard experiments
of Section VI-A.

3egs/ami/s5c/local/chain/run_tdnn.sh

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

https://egs/ami/s5c/local/chain/run_tdnn.sh

3690 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

TABLE V
PERFORMANCE OF THE BASELINE FULL PRECISION (LM 1), UNIFORM PRECISION QUANTIZED (LM 2-7) AND MIXED PRECISION QUANTIZED RNNLMS WITH

LOCAL LAYER OR NODE LEVEL PRECISION SET EITHER MANUALLY WITH EQUAL BIT-WIDTH (LM 8-11, 12-15) OR AUTOMATICALLY LEARNED (LM 16-21)
USING KL, HES OR NAS BASED MIXED PRECISION QUANTIZATION METHODS OF SECTION V ON AMI DEV AND EVAL SETS OF IHM, MDM8 AND SDM1

CONDITIONS. EQUAL WEIGHT INTERPOLATION OF N-GRAM AND NEURAL LMS USED IN N-BEST RESTORING. ALL WER CHANGES OF NO STATISTICAL

SIGNIFICANCE (MAPSSWE, α = 0.05) OVER THE FULL PRECISION BASELINE (LM 1) ARE MARKED WITH “∗”

TABLE VI
PERFORMANCE OF THE BASELINE FULL PRECISION (LM 1), UNIFORM PRECISION QUANTIZED (LM 2-7) AND MIXED PRECISION QUANTIZED TRANSFORMER LMS

WITH LOCAL LAYER OR NODE LEVEL PRECISION SET EITHER MANUALLY WITH EQUAL BIT-WIDTH (LM 8-11, 12-15) OR AUTOMATICALLY LEARNED (LM
16-21) USING KL, HES OR NAS BASED MIXED PRECISION QUANTIZATION METHODS OF SECTION V ON AMI DEV, EVAL SETS OF IHM, MDM8 AND SDM1

CONDITIONS. EQUAL WEIGHT INTERPOLATION OF N-GRAM AND NEURAL LMS USED IN N-BEST RESTORING. ALL WER CHANGES OF NO STATISTICAL

SIGNIFICANCE (MAPSSWE, α = 0.05) OVER THE FULL PRECISION BASELINE (LM 1) ARE MARKED WITH “∗”

The mixed precision quantization experiments for RNNLMs
and Transformer LMs on AMI meeting room data are shown in
Tables V and VI. The following trends similar to those previously
found on the Switchboard data are again observed in Table V
and VI for LSTM-RNN and Transformer LMs.
� The mixed precision quantized LSTM and Transformer

LMs (LM 8-21 in Table V and Table VI) consistently

outperform the uniform precision quantized models (LM
2-7 in Table V and Table VI). For example, given the same
quantization precision at approximately 4-bit (compression
ratio of 8 times over 32-bit full precision), a wide range of
mixed precision quantized LMs (LM 10, 14, 17, 19, 21 in
Table V and Table VI) produced statistically significant
WER reductions up to 0.9% absolute (LM 19 vs. LM 4

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3691

on mdm dev in Table V) for LSTM LMs, and up to 0.7%
absolute WER reduction (LM 19 vs. LM 4 on mdm dev in
Table VI) for Transformer LMs over the comparable 4-bit
uniform precision quantization (LM 4).

� Among the six mixed precision quantization LSTM and
Transformer LMs with approximately 4-bit precision (LM
17, 19, 21 in Table V and Table VI), both the KL quantized
LSTM and Transformer LMs (LM 19 in Table V and Ta-
ble VI) with their corresponding 3.8-bit and 4.0-bit average
precision give the lowest WERs. Both the KL and curvature
based mixed precision quantized Transformer LMs (LM
17, 19 in Table VI) with 4-bit average precision produced
no statistically significant recognition error rate increase
relative to the full precision Transformer LM (LM 1 in
Table VI) across all test sets.

VII. CONCLUSION

This paper presents a set of novel mixed precision based
neural network LM quantization techniques for LSTM-RNNs
and Transformers. In order to account for the locally varying
performance sensitivity to low-bit quantization, the optimal local
precision settings are automatically learned by either minimizing
the KL-divergence or log-likelihood curvature based perfor-
mance sensitivity measures, or derived using mixed precision
neural architecture search. Quantized LSTM-RNN and Trans-
former LM parameters are estimated efficiently using alternating
direction methods of multipliers based optimization, to address
the low convergence speed issue when directly applying gra-
dient descent methods to estimate discrete quantized neural
network parameters. Experimental results conducted on two
state-of-the-art speech recognition tasks suggest the proposed
mixed precision neural network LM quantization methods out-
perform traditional uniform precision based quantization ap-
proaches, and can produce “lossless” quantization and large
model size compression ratios of up to around 16 times over
the full precision LSTM-RNN and Transformer LM baselines
while incurring no statistically significant recognition accuracy
degradation.

All of the three automatic mixed precision configuration
approaches proposed in this paper aim to minimize the per-
formance sensitivity to quantization errors. To the best of our
knowledge, they are the first research work to apply mixed
precision quantization to neural language models for speech
recognition tasks. For all the three approaches such performance
sensitivity measure is related to the empirical training data log-
likelihood degradation given a particular quantization precision
bit-width setting relative to the full precision model. The precise
manner with which such measure is computed differs among the
three. This leads to the measures of information loss via KL-
divergence, rate of log-likelihood degradation using curvature,
and penalized log-likelihood based mixed precision architecture
search approaches respectively. Experimental results obtained
both the Switchboard and AMI tasks shown in Tables II to V
on LSTM-RNN and Transformer LMs suggest the performance
between the KL-divergence and log-likelihood curvature meth-
ods is consistently close. This is expected as both are measuring

similar forms of log-likelihood based quantization loss, while an
extra precision penalty term is introduced in the mixed precision
NAS cost function. The larger performance difference between
the mixed precision architecture search approach and the other
two methods, for example, shown in Tables II and III, may
be attributed to the use of Softmax function based architecture
weights in the DARTS super-network. When similar architecture
weights are obtained, the confusion over different candidate
precision settings increases and search errors may occur.

Future research will focus on improving mixed precision
quantization methods and their application to other neural net-
work components of speech recognition systems and end-to-end
based neural architectures.

REFERENCES

[1] S. Katz, “Estimation of probabilities from sparse data for the language
model component of a speech recognizer,” IEEE Trans. Acoust., Speech,
Signal Process., vol. 35, no. 3, pp. 400–401, Mar. 1987.

[2] S. F. Chen and J. Goodman, “An empirical study of smoothing tech-
niques for language modeling,” Comput. Speech Lang., vol. 13, no. 4,
pp. 359–394, 1999.

[3] Y. Bengio et al., “A neural probabilistic language model,” J. Mach. Learn.
Res., vol. 3, pp. 1137–1155, 2003.

[4] H. Schwenk, “Continuous space language models,” Comput. Speech Lang.,
vol. 21, no. 3, pp. 492–518, 2007.

[5] T. Mikolov et al., “Recurrent neural network based language model,” in
Proc. Interspeech, 2010, pp. 1045–1048.

[6] E. Arisoy et al., “Deep neural network language models,” in Proc. NAACL-
HLT 2012 Workshop, 2012, pp. 20–28.

[7] H. Le, I. Oparin, A. Allauzen, J. Gauvain, and F. Yvon, “Structured
output layer neural network language models for speech recognition,”
IEEE Trans. Audio, Speech, Lang. Process., vol. 21, no. 1, pp. 197–206,
Jan. 2013.

[8] M. Sundermeyer, H. Ney, and R. Schlüter, “From feedforward to recurrent
LSTM neural networks for language modeling,” IEEE Trans. Audio,
Speech, Lang. Process., vol. 23, no. 3, pp. 517–529, Mar. 2015.

[9] X. Chen, X. Liu, Y. Wang, M. J. F. Gales, and P. C. Woodland, “Efficient
training and evaluation of recurrent neural network language models
for automatic speech recognition,” IEEE Trans. Audio, Speech, Lang.
Process., vol. 24, no. 11, pp. 2146–2157, Nov. 2016.

[10] X. Chen, X. Liu, Y. Wang, A. Ragni, J. H. M. Wong, and M. J. F. Gales,
“Exploiting future word contexts in neural network language models for
speech recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol. 27,
no. 9, pp. 1444–1454, Sep. 2019.

[11] K. Irie et al., “Language modeling with deep transformers,” in Proc.
Interspeech, 2019, pp. 3905–3909.

[12] K. Li et al., “An empirical study of transformer-based neural language
model adaptation,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2020, pp. 7934–7938.

[13] E. Beck et al., “LVCSR with transformer language models,” in Proc.
Interspeech, 2020, pp. 1798–1802.

[14] P. Baquero-Arnal et al., “Improved hybrid streaming ASR with transformer
language models,” in Proc. Interspeech, 2020, pp. 2127–2131.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[16] A. Vaswani et al., “Attention is all you need,” in Proc. Neural Inf. Process.
Syst., 2017, pp. 5998–6008.

[17] J. Xu, S. Hu, J. Yu, X. Liu, and H. Meng, “Mixed precision quantization of
transformer language models for speech recognition,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2021, pp. 7383–7387.

[18] J. Cheng et al., “Long short-term memory-networks for machine read-
ing,” in Proc. Conf. Empirical Methods Natural Lang. Process., 2016,
pp. 551–561.

[19] Z. Lin et al., “A structured self-attentive sentence embedding,” in Proc.
Int. Conf. Learn. Representations, 2017.

[20] A. Parikh et al., “A decomposable attention model for natural language
inference,” in Proc. Conf. Empirical Methods Natural Lang. Process.,
2016, pp. 2249–2255.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

3692 IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[22] J. L. Ba et al., “Layer normalization,” 2016, arXiv:1607.06450.
[23] J. Gehring et al., “Convolutional sequence to sequence learning,” in Proc.

Int. Conf. Learn. Representations, 2017, pp. 1243–1252.
[24] A. Zeyer, P. Bahar, K. Irie, R. Schlüter, and H. Ney, “A comparison of

transformer and LSTM encoder decoder models for ASR,” in Proc. IEEE
Autom. Speech Recognit. Understanding Workshop, 2019, pp. 8–15.

[25] Y. Wang et al., “Transformer-based acoustic modeling for hybrid speech
recognition,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.,
2020, pp. 6874–6878.

[26] Q. Zhang et al., “Transformer transducer: A streamable speech recognition
model with transformer encoders and RNN-T loss,” in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., 2020, pp. 7829–7833.

[27] S. Karita et al., “A comparative study on transformer vs RNN in speech
applications,” in Proc. IEEE Autom. Speech Recognit. Understanding
Workshop, 2019, pp. 449–456.

[28] A. Graves, “Sequence transduction with recurrent neural networks,” in
Proc. Int. Conf. Mach. Learn., 2012.

[29] W. Chan, N. Jaitly, Q. Le, and O. Vinyals, “Listen, attend and spell:
A neural network for large vocabulary conversational speech recogni-
tion,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2016,
pp. 4960–4964.

[30] Z. Tüske et al., “Single headed attention based sequence-to-sequence
model for state-of-the-art results on switchboard,” in Proc. Interspeech,
2020, pp. 551–555.

[31] D. Soudry et al., “Expectation backpropagation: Parameter-free training
of multilayer neural networks with continuous or discrete weights,” Proc.
Neural Inf. Process. Syst., vol. 1, pp. 963–971, 2014.

[32] M. Courbariaux et al., “Binaryconnect: Training deep neural networks
with binary weights during propagations,” in Proc. Neural Inf. Process.
Syst., 2015, pp. 3123–3131.

[33] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” J. Mach. Learn. Res., vol. 18,
no. 1, pp. 6869–6898, 2017.

[34] M. Rastegari et al., “Xnor-net: Imagenet classification using binary con-
volutional neural networks,” in Proc. Eur. Conf. Comput. Vis., Cham,
Springer, 2016, pp. 525–542.

[35] Z. Dong et al., “Hawq: Hessian aware quantization of neural networks
with mixed-precision,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp. 293–302.

[36] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “HAQ: Hardware-aware auto-
mated quantization with mixed precision,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 8604–8612.

[37] Z. Dong et al., “Hawq-v2: Hessian aware trace-weighted quantization of
neural networks,” in Proc. Adv. Neural Inf. Process. Syst., 2019.

[38] S. Han et al., “Learning both weights and connections for efficient neural
networks,” in Proc. Neural Inf. Process. Syst., 2015, pp. 1135–1143.

[39] S. Han et al., “Deep compression: Compressing deep neural networks with
pruning, trained quantization and huffman coding,” in Proc. Int. Conf.
Learn. Representations, 2015.

[40] H. Mao et al., “Exploring the regularity of sparse structure in convolutional
neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2017, pp. 1927–1934.

[41] Baoyuan Liu, Min Wang, H. Foroosh, M. Tappen, and M. Penksy, “Sparse
convolutional neural networks,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 806–814.

[42] W. Wen et al., “Learning structured sparsity in deep neural networks,”
Neural Inf. Process. Syst., vol. 29, pp. 2074–2082, 2016.

[43] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[44] C. Szegedy et al., “Inception-v4, inception-resnet and the impact of
residual connections on learning,” Proc. AAAI Conf. Artif. Intell., vol. 31,
2017, pp. 4278 4284.

[45] G. Hinton et al., “Distilling the knowledge in a neural network,” Neural
Inf. Process. Syst., 2014.

[46] A. Romero et al., “Fitnets: Hints for thin deep nets,” in Proc. Int. Conf.
Learn. Representations, 2015.

[47] Y. Chebotar and A. Waters, “Distilling knowledge from ensembles of
neural networks for speech recognition,” in Proc. Interspeech, 2016,
pp. 3439–3443.

[48] M. Jaderberg et al., “Speeding up convolutional neural networks with low
rank expansions,” in Proc. Brit. Mach. Vis. Conf., 2014.

[49] V. Lebedev et al., “Speeding-up convolutional neural networks using
fine-tuned CP-decomposition,” in Proc. Int. Conf. Learn. Representations,
2015.

[50] C. Tai et al., “Convolutional neural networks with low-rank regulariza-
tion,” in Proc. Int. Conf. Learn. Representations, 2016.

[51] V. Sindhwani et al., “Structured transforms for small-footprint deep learn-
ing,” in Proc. Neural Inf. Process. Syst., 2015, pp. 3088–3096.

[52] F. N. Iandola et al., “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and< 0.5 mb model size,” 2016, arXiv:1602.07360.

[53] X. Zhang, X. Zhou, M. Lin, and J. Sun, “Shufflenet: An extremely efficient
convolutional neural network for mobile devices,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 6848–6856.

[54] N. Ma et al., “ShuffleNet V2: Practical guidelines for efficient CNN
architecture design,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 116–131.

[55] T. N. Sainath, B. Kingsbury, V. Sindhwani, E. Arisoy, and B. Ramabhadran,
“Low-rank matrix factorization for deep neural network training with
high-dimensional output targets,” in Proc. IEEE Int. Conf. Acoust., Speech,
Signal Process., 2013, pp. 6655–6659.

[56] Y. Wang et al., “Small-footprint high-performance deep neural network-
based speech recognition using split-VQ,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2015, pp. 4984–4988.

[57] X. Liu et al., “Binarized LSTM language model, ”Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol., vol. 1,
pp. 2113–2121, 2018.

[58] K. Yu, R. Ma, K. Shi, and Q. Liu, “Neural network language model
compression with product quantization and soft binarization,” IEEE Trans.
Audio, Speech, Lang. Process., vol. 28, pp. 2438–2449, Aug. 2020.

[59] Y. He et al., “Streaming end-to-end speech recognition for mobile de-
vices,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2019,
pp. 6381–6385.

[60] Ł. Dudziak et al., “Shrinkml: End-to-end ASR model compression using
reinforcement learning,” in Proc. Interspeech, 2019, pp. 2235–2239.

[61] K. C. Sim et al., “An investigation into on-device personalization of end-
to-end automatic speech recognition models,” in Proc. Interspeech, 2019,
pp. 774–778.

[62] Y.-m. Qian and X. Xiang, “Binary neural networks for speech recognition,”
Front. Inf. Technol. Electron. Eng., vol. 20, no. 5, pp. 701–715, 2019.

[63] K. O. Stanley and R. Miikkulainen, “Evolving neural networks through
augmenting topologies,” Evol. Comput., vol. 10, no. 2, pp. 99–127, 2002.

[64] K. Kandasamy et al., “Neural architecture search with Bayesian optimisa-
tion and optimal transport,” in Proc. Adv. Neural Inf. Process. Syst., 2018,
pp. 2020–2029.

[65] B. Zoph and Q. V. Le, “Neural architecture search with reinforcement
learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[66] B. Baker et al., “Designing neural network architectures using reinforce-
ment learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[67] H. Cai et al., “Efficient architecture search by network transformation,”
Proc. AAAI Conf. Artif. Intell., vol. 32, 2018, pp. 2787–2794.

[68] Z. Zhong, J. Yan, W. Wu, J. Shao, and C. Liu, “Practical block-wise neural
network architecture generation,” in Proc. IEEE/CVF Conf. Comput. Vis.
Pattern Recognit., 2018, pp. 2423–2432.

[69] H. Liu et al., “Darts: Differentiable architecture search,” in Proc. Int. Conf.
Learn. Representations, 2018.

[70] S. Xie et al., “Snas: Stochastic neural architecture search,” in Proc. Int.
Conf. Learn. Representations, 2019.

[71] H. Cai et al., “Proxylessnas: Direct neural architecture search on target
task and hardware,” in Proc. Int. Conf. Learn. Representations, 2019.

[72] Z. Cai and N. Vasconcelos, “Rethinking differentiable search for mixed-
precision neural networks,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern
Recognit., 2020, pp. 2346–2355.

[73] S. Boyd et al., Distributed Optimization and Statistical Learning Via the
Alternating Direction Method of Multipliers. Now Publishers Inc, 2011.

[74] C. Leng et al., “Extremely low bit neural network: Squeeze the last bit out
with ADMM,” Proc. AAAI Conf. Artif. Intell., vol. 32, 2018, pp. 3466–
3473.

[75] R. Ma, Q. Liu, and K. Yu, “Highly efficient neural network language
model compression using soft binarization training,” in Proc. IEEE Autom.
Speech Recognit. Understanding Workshop, 2019, pp. 62–69.

[76] Y. Boo and W. Sung, “Fixed-point optimization of transformer neural
network,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2020,
pp. 1753–1757.

[77] J. Xu, X. Chen, S. Hu, J. Yu, X. Liu, and H. Meng, “Low-bit quantization
of recurrent neural network language models using alternating direction
methods of multipliers,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal
Process., 2020, pp. 7939–7943.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

XU et al.: MIXED PRECISION LOW-BIT QUANTIZATION OF NEURAL NETWORK LANGUAGE MODELS FOR SPEECH RECOGNITION 3693

[78] D. Povey et al., “Purely sequence-trained neural networks for ASR based
on lattice-free MMI,” in Proc. Interspeech, 2016, pp. 2751–2755.

[79] N. Dehak et al., “Language recognition via i-vectors and dimensionality
reduction,” in Proc. Interspeech, 2011, pp. 857–860.

[80] P. Swietojanski and S. Renals, “Learning hidden unit contributions for
unsupervised speaker adaptation of neural network acoustic models,” in
Proc. IEEE Spoken Lang. Technol. Workshop, 2014, pp. 171–176.

[81] J. J. Godfrey, E. C. Holliman, and J. McDaniel, “SWITCHBOARD:
Telephone speech corpus for research and development,” Proc. IEEE Int.
Conf. Acoust., Speech, Signal Process., vol. 1, pp. 517–520, 1992.

[82] T. Hain et al., “The AMI meeting transcription system: Progress and
performance,” in Proc. Int. Workshop Mach. Learn. Multimodal Interact.,
Berlin, Heidelberg: Springer, 2006, pp. 419–431.

[83] S. Hochreiter and J. Schmidhuber, “LSTM can solve hard long time lag
problems,” in Proc. Neural Inf. Process. Syst., 1997, pp. 473–479.

[84] D. Hendrycks and K. Gimpel, “Gaussian error linear units (gelus),” 2016,
arXiv:1606.08415.

[85] F. Li et al., “Ternary weight networks,” 2016, arXiv:1605.04711.
[86] G. Korpelevi, “An extragradient method for finding saddle points and for

other problems, konom. I mat,” Ekonom. i Mat. Metody, no. 4, pp. 747–756,
1976.

[87] A. Stolcke, “Entropy-based pruning of backoff language models,” in Proc.
DARPA Broadcast. News Transcription Understanding Workshop, 1998.

[88] K. Seymore and R. Rosenfeld, “Scalable backoff language models,” Proc.
4th Int. Conf. Spoken Lang. Process., vol. 1, pp. 232–235, 1996.

[89] H. Avron and S. Toledo, “Randomized algorithms for estimating the trace
of an implicit symmetric positive semi-definite matrix,” J. ACM, vol. 58,
no. 2, pp. 1–34, 2011.

[90] T. Elsken et al., “Neural architecture search: A survey,” J. Mach. Learn.
Res., vol. 20, no. 55, pp. 1–21, 2019.

[91] S. Hu et al., “Neural architecture search for LF-MMI trained time delay
neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech, Signal Pro-
cess., 2020, pp. 6758–6762.

[92] S. Hu et al., “Dsnas: Direct neural architecture search without parameter
retraining,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
Jun. 2020, pp. 12081–12089.

[93] H. Pham et al., “Efficient neural architecture search via parameters shar-
ing,” in Proc. Int. Conf. Mach. Learn., 2018, pp. 4095–4104.

[94] A. Fasoli et al., “4-Bit quantization of LSTM-Based speech recognition
models,” in Proc. Interspeech, 2021, pp. 2586–2590.

[95] D. Povey et al., “The Kaldi speech recognition toolkit,” in Proc. IEEE
Workshop Autom. Speech Recognit. Understanding, 2011.

[96] X. Xie, X. Liu, T. Lee, and L. Wang, “Bayesian learning for deep neural
network adaptation,” IEEE/ACM Trans. Audio, Speech, Lang. Process.,
vol. 29, pp. 2096–2110, May 2021.

[97] J. Li et al., “On the comparison of popular end-to-end models for large
scale speech recognition,” in Proc. Interspeech, 2020, pp. 1–5.

[98] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur. Conf.
Comput. Vis., 2018, pp. 19–34.

[99] A. M. Maddison, J. Chris, and Y. W. Teh, “The concrete distribution: A
continuous relaxation of discrete random variables,” in Proc. Int. Conf.
Learn. Representations, 2017.

Junhao Xu received the B.Sc. degree in computer
science from Shanghai Jiaotong University, Shang-
hai, China, in 2018. She is currently working toward
the Ph.D. degree with the Chinese University of Hong
Kong, Hong Kong. Her current research interests in-
clude model compression, audio-visual speech recog-
nition, and language model.

Jianwei Yu received the B.Sc. degree in physics
from Nanjing University, Nanjing, China, in 2017.
He is currently working toward the Ph.D. degree with
the Chinese University of Hong Kong, Hong Kong.
His current research interests include noise robust
speech recognition, audio-visual speech recognition,
Bayesian modeling, and language model.

Shoukang Hu (Member, IEEE) received the B.E.
degree in mechanical and electrical engineering from
the University of Electronic Science and Technology
of China, Chengdu, China, in 2017. He is currently
working toward the Ph.D. degree with the Chinese
University of Hong Kong, Hong Kong. His current re-
search interests include speech recognition, Bayesian
modeling, and neural architecture search.

Xunying Liu (Member, IEEE) received the Ph.D.
degree in speech recognition and the M.Phil. degree
in computer speech and language processing from the
University of Cambridge, Cambridge, U.K. He was a
Senior Research Associate with Machine Intelligence
Laboratory, Cambridge University Engineering De-
partment and since 2016, he has been an Associate
Professor with the Department of Systems Engineer-
ing and Engineering Management, Chinese Univer-
sity of Hong Kong, Hong Kong. His current research
interests include machine learning, large vocabulary

continuous speech recognition, statistical language modelling, noise robust
speech recognition, audio-visual speech recognition, computer aided language
learning, speech synthesis, and assistive technology. He and his students was
the recipient of a number of best paper awards and nominations, including the
Best Paper Award at ISCA Interspeech 2010 for the paper titled Language Model
Cross Adaptation for LVCSR System Combination, and the Best Paper Award at
IEEE ICASSP2019 for their paper titled BLHUC: Bayesian Learning of Hidden
Unit Contributions for Deep Neural Network Speaker Adaptation. Dr. Xunying
Liu is a Member of ISCA.

Helen Meng (Fellow, IEEE) received the B.S., M.S.,
and Ph.D. degrees in electrical engineering from the
Massachusetts Institute of Technology, Cambridge,
MA, USA. In 1998, she joined the Chinese University
of Hong Kong, Hong Kong, where she is currently
the Chair Professor with the Department of Systems
Engineering and Engineering Management. She was
the former Department Chairman and an Associate
Dean of Research with the Faculty of Engineering.
Her research interests include human–computer in-
teraction via multimodal and multilingual spoken lan-

guage systems, spoken dialog systems, computer-aided pronunciation training,
speech processing in assistive technologies, health-related applications, and Big
Data decision analytics. Between 2009 and 2011, she was the Editor-in-Chief
of the IEEE TRANSACTIONS ON AUDIO, SPEECH AND LANGUAGE PROCESSING.
She was the recipient of the IEEE Signal Processing Society Leo L. Beranek
Meritorious Service Award in 2019. She was also on the Elected Board Member
of the International Speech Communication Association (ISCA) and an Inter-
national Advisory Board Member.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on June 16,2022 at 07:30:55 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

